Laboratiry of Mathematical Chemistry Bourgas University, Bulgaria

Using CATABOL to predict persistency, biodegradation pathways and stable degradants

International Science Forum, *Computational Toxicology*US EPA, May 21-23, 2007

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

Metabolism

Toxicodynamics

Biodegradation
Bioaccumulation
Acute Toxicity
Chronic Toxicity
Hormone Toxicity
Skin sensitization
Mutagenicity

• • •

The OASIS QSAR Concept:

To analyze toxicity as a result of metabolic activation

Combining on same modeling platform:

- Toxicokinetics specific metabolism
- Toxicodynamic interaction with macromolecules

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

Metabolism

Energy-generating component: Catabolism

Produce energy (as ATP) and simple oxidized compounds

Energy-consuming component: Anabolism

Build cell material

- 1. Response to environment
- 2. Response to human health

Prokaryotes

Kingdom Monera

Prokaryotes

Kingdom Monera

The Kingdom Monera (Prokaryotes)

Bacteria tend to group genes that are functionally related together on the chromosome.

Operon - grouping of genes in bacteria under the control of the same regulatory system.

Lactose operon: contains genes that encode enzymes responsible for lactose metabolism

Eukaryotes

Kingdoms:
Protista
Planta
Fungi
Animalia

Eukaryotes

Kingdoms:
Protista
Planta
Fungi
Animalia

Eukaryotes

Summary

- 1. The application of metabolic transformations is strongly organized.
- 2. This is a premise for development of metabolic simulators as a hierarchically organized list of reactions

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

Simulation of molecular transformations

$$R_1-C$$
 $O-R_2$
 R_1-C
 $O-R_1-C$
 $O-R_2$
 R_1-C
 $O-R_1-C$
 $O-R_1-C$
 $O-R_1-C$
 $O-R_1-C$
 $O-$

Simulation of molecular transformations

#	Transformation rules	Rate
1	X_2C-C O X_2C-C O	High athematical (
2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Moderate
3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Low

Simulators of metabolism

Rule based systems

BESS (P&G and Michigan State University)

META (MultiCASE Inc)

METEOR (Lhasa Ltd)

CATABOL (P&G and LMC, Bourgas As. Zlatarov University)

TIMES (LMC, Bourgas As. Zlatarov University)

PPS (UM-BBD, http://umbbd.msi.umn.edu/)

MEPPS (under development, Lhasa Ltd)

Simulators of metabolism

Rule based systems

BESS (P&G and Michigan State University)

META (MultiCASE Inc)

METEOR (Lhasa Ltd)

CATABOL (P&G and LMC, Bourgas As. Zlatarov University)

TIMES (LMC, Bourgas As. Zlatarov University)

PPS (UM-BBD, http://umbbd.msi.umn.edu/)

MEPPS (under development, Lhasa Ltd)

Simulators of metabolism

Rule based systems

METEOR (Lhasa Ltd)

PPS (UM-BBD)

Simulators of metabolism

Rule based systems

 $\begin{array}{c} \text{CATABOL (P\&G and LMC, Bourgas As. Zlatarov University)} \\ \text{K} \\ \text{TIMES (LMC, Bourgas As. Zlatarov University)} \end{array}$

What is a METABOLIC SIMULATOR?

Prioritized list of molecular transformations and substructure matching engine applying it:

- Including spontaneous and enzymatic reactions
- Probabilistic scheme for prioritization of reactions
- Organ/tissue specific

Illustrating Basic Principles of the Metabolic Simulators

Geminal diol decomposition

$$c \stackrel{\text{OH}}{\longrightarrow} c = 0$$

 β -oxidation

$$OH \longrightarrow OH$$

Cyclohexanone oxidation

Ester hydrolysis

Amine decomposition

 ω -Oxidation

Azo-bond cleavage

$$C-N$$
 $N-C$
 $C-NH_2 + H_2N-C$

Substrate	Principal transformations	Metabolites
	Geminal diol decomposition	
	$C \rightarrow C \rightarrow C \rightarrow C = O$	
	β-oxidation	
	OH P = 0.99	
	Cyclohexanone oxidation	
	P = 0.95 OH	
	Ester hydrolysis P = 0.90 OH OH O	
	Amine decomposition	
	P = 0.75 $P = 0.75$ $P = 0.75$	
	ω-Oxidation	
	P = 0.40 OH	
	Azo-bond cleavage	
	$P = 0.001$ $C-NH_2 + H_2N-C$	

Substrate	Principal transform ations	Metabolites
0	Geminal diol decomposition OH P = 1.00 COH OH	
	β -oxidation $P = 0.99$ OH	
	Cyclohexanone oxidation O P = 0.95 OH	
	Ester hydrolysis O O O O O O O O O O O O O O O O O O	
	Amine decomposition C NH ₂ P = 0.75 C C C C	nemistry
	$ω$ -Oxidation $CH_3 \qquad P = 0.40$ OH	
	Azo-bond cleavage $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	

/

Match? - No!

Geminal diol decomposition

 β -oxidation

$$OH \xrightarrow{P = 0.99} OH$$

Cyclohexanone oxidation

Ester hydrolysis

Amine decomposition

 ω -Oxidation

$$CH_3$$
 $P = 0.40$ OH

Azo-bond cleavage

$$C-N$$
 $N-C$
 $P = 0.001$
 $C-NH_2 + H_2N-C$

Substrate	Principal transformations	Metabolites
	Geminal diol decomposition	
	$C \stackrel{OH}{\longrightarrow} C = O$	
0	β -oxidation $P = 0.99$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Cyclohexanone oxidation	
	O P = 0.95 OH	
	Ester hydrolysis	
	O O O O O O O O O O O O O O O O O O O	
	Amine decomposition	
	$\begin{array}{c c} & & \\ \hline \\ C & \\ \hline \\ NH_2 & \\ \hline \\ C & \\ \hline \end{array}$	
	ω-Oxidation	
	CH_3 $P = 0.40$ OH	
	Azo-bond cleavage	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

S	u	b	S	tr	а	t

Principal transformations

Metabolites

Geminal diol decomposition

$$C \stackrel{OH}{\longrightarrow} C = O$$

β-oxidation

Cyclohexanone oxidation

Ester hydrolysis

Amine decomposition

$$\begin{array}{c|c} -C & P = 0.75 \\ \hline -C & -C \\ \hline \end{array}$$

 ω -Oxidation

$$CH_3$$
 $P = 0.40$ OH

Azo-bond cleavage

$$C-N$$
 $C-N$
 $C-NH_2 + H_2N-C$

Substrate	Principal transformations	Metabolites
	Geminal diol decomposition	
	\ OH P = 1.00 \	
	CC → C=O	
	β-oxidation	
	$\begin{array}{c} OH \\ \hline \end{array} \begin{array}{c} P = 0.99 \\ \hline \end{array} \begin{array}{c} OH \\ \hline \end{array}$	
	O Ö	
, _	Cyclohexanone oxidation	0. 1
	P = 0.95 RESUL	
Match?	- Yes!	
	ОН	ОН
	Ester hydrolysis	
	O— P = 0.90 O	
	→ → → + →	
18.30	Ö Ö OH Ö	
	Amine decomposition	
Y	$\frac{1}{C}$ $P = 0.75$ $\frac{1}{C}$	
	$P = 0.75$ \rightarrow	
	ω-Oxidation	
,		
	CH_3 $\stackrel{P=0.40}{\longrightarrow}$ OH	
(/)		
ОН	Azo-bond cleavage	
OFF	P = 0.001	
	$P = 0.001$ $C - NH_2 + H_2N - C$	

Outlook

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

Predicted biotransformation pathway for camphor

C(=O)(O)C(C)(C)C(=O)O; Q=0.528212; Pb=0.529; Ps=0.528; logKOV\=0.390 Transformation 394 Level 13

C1(=0)C2(C)C(C)C(C)C(C2)C1; Q=0.001000; Pb=1.000; Ps=0.001; logKOW=3.045 Transformation 164 Level 0

C(=0)(0)C(C)(C)C(0)(CC(=0)0)CC(=0)O; Q=0.172507; Pb=0.701; Ps=0.173; logKOVV=1.223 Transformation 281 Level 11

Metabolites

C(=O)(O)C(C)(C)C(=O)O; Q=0.528212; Po=0.529; Ps=0.528; logKOV\=0.390 Transformation 394 Level 13

Persistency Evaluation Problems Solved by CATABOL

- Chemicals with same BOD could have different fate
- •BOD is not indicative for obtaining stable degradants

Transformation 0, Quantity=0.0200

Persistency Evaluation Problems Solved by CATABOL

- Chemicals with same BOD could have different fate
- •BOD is not indicative for obtaining stable degradants
- •Toxicity of chemicals could be due to the stable degradants

Metabolites

Stable degradants in chemical legislation

Laboratory of Mathematical Chemistry

Japanese NITE

Chemical Substances Control Law (CSCL)

The Features of the BCF Data Set under CSCL

Relationship between Biodegradation Test and Bioconcentration Test

Biodegradaton Test		Decision	New Tool	
Method	Test Result		Decision	Next Test
	1	Parent Residual > 40% and Metabolite Residual < 1%		Bioconcentraiotn for Parent
Biodegradati	2	Parent Residual ≥ 1% and Metabolite Residual ≥ 1%	•	Bioconcentraiotn for Parent and Metabolite(s) (≥1%)
on Test (OECD 301C)	3	Parent Residual < 1% and Metabolite Residual ≥ 1%		Bioconcentraiotn for Metabolite(s) (≥1%)
	4	Parent Residual ≤ 40% and Metabolite Residual < 1%	Readily Biodegradable	Nothing (Reguration Free)

Bioconcentration Test

OECD305C: The test fish (carp) is exposed to two concentrations of the test chemical substance in water under flow-through conditions.

All tests are conducted by GLP laboratories and their test results are reviewed by the joint council.

The Features of the BCF Data Set under CSCL

Relationship between Biodegradation Test and Bioconcentration Test

Biodegradaton Test		Decision	New Tool	
Method	Test Result		Decision	Next Test
	1	Parent Residual > 40% and Metabolite Residual < 1%		Bioconcentraiotn for Parent
Biodegradati on Test (OECD 301C)	2	Parent Residual ≥ 1% and Metabolite Residual ≥ 1%	•	Bioconcentraiotn for Parent and Metabolite(s) (≥1%)
	3	Parent Residual < 1% and Metabolite Residual ≥ 1%		Bioconcentraiotn for Metabolite(s) (≥1%)
	4	Parent Residual ≤ 40% and Metabolite Residual < 1%	Readily Biodegradable	Nothing (Reguration Free)

Bioconcentration Test

OECD305C: The test fish (carp) is exposed to two concentrations of the test chemical substance in water under flow-through conditions.

All tests are conducted by GLP laboratories and their test results are reviewed by the joint council.

BOD or CO₂ production

$$BOD = \sum_{n} \Delta_{n}^{O_{2}} \prod_{m=1}^{n} P_{m} \qquad BOD^{Th} = \sum_{n} \Delta_{n}^{O_{2}}$$

$$BOD^{Th} = \sum_{n} \Delta_{n}^{O_{2}}$$

$$CO_2 = \sum_{n} \Delta_n^{CO_2} \prod_{m=1}^{n} P_m$$
 $CO_2^{Th} = \sum_{n} \Delta_n^{CO_2}$

$$CO_2^{Th} = \sum_n \Delta_n^{CO_2}$$

Biodegradability - % of theoretical

$$BOD^{Calc} = \frac{\sum_{n} \Delta_{n}^{O_{2}} \prod_{m=1}^{n} P_{m}}{\sum_{n} \Delta_{n}^{O_{2}}} 100,\%$$

$$ThCO_{2}^{Calc} = \frac{\sum_{n} \Delta_{n}^{CO_{2}} \prod_{m=1}^{n} P_{m}}{\sum_{n} \Delta_{n}^{O_{2}}} 100,\%$$

Quantities of metabolites

 $Q_n^{Calc} = (1 - P_{n+1}) \prod_{m=1 \to n} P_m$, mol/mol parent

First order kinetics

$$BOD = 100(1 - \exp(-kt))$$

$$t_{1/2} = \ln(2)/k$$

$$k = -\ln(1 - BOD_{28-d}^{Calc} / 100) / 28$$

Ultimate half-life

$$t_{1/2} = \frac{\ln(2)}{-\ln(1 - BOD_{28-d}^{Calc} / 100) / 28}$$

First order kinetics

$$BOD = 100(1 - \exp(-kt))$$

$$t_{1/2} = \ln(2)/k$$

$$k = -\ln(1 - BOD_{28-d}^{Calc} / 100) / 28$$

$$BOD^{Calc} = 31\%$$

$$k = 0.013 \, \text{day}^{-1}$$

Ultimate half-life

$$t_{1/2} = \frac{\ln(2)}{-\ln(1 - BOD_{28-d}^{Calc} / 100) / 28}$$

$$t_{1/2} = 52 \text{ days}$$

CATABOL – training data

Observed BOD – Estimation of transformation probabilities

MITI I test (OECD 301 C)

745 training chemicals

347 external validation chemicals

$$\min_{P} RSS = \sum_{n=1}^{N} \left(BOD_{n}^{Obs.} - BOD_{n}^{Calc.} \right)^{2}$$

Coefficient of determination R² = 0.69 Sensitivity (ready biodegradable) - 86% Specificity (not ready biodegradable) - 91%

Outlook

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

Observed

Predicted

How good is reproducibility of the observed catabolism?

LMC

| Solution | Continue | Cont

Observed versus simulated pathways

Observed and predicted catabolism

Union of pathways

- Observed and predicted metabolites, $S_{\text{Obs}} \cap S_{\text{Pred}}$
- Observed and not predicted metabolites, $S_{\rm Obs} S_{\rm Pred}$ or $S_{\rm Obs} \setminus S_{\rm Pred}$
- Predicted and not observed metabolites, $S_{\text{Pred}} S_{\text{Obs}}$ or $S_{\text{Pred}} \setminus S_{\text{Obs}}$

Union of pathways

Probability that the metabolite is observed, given that the metabolite is predicted (**predictability**)

$$\frac{Card(S_{\text{Obs}} \cap S_{\text{Pred}})}{Card(S_{\text{Pred}})} = \frac{\bullet}{\bullet} + \bullet$$

Probability that the metabolite is observed, given that the metabolite is truly observed (**sensitivity**)

$$\frac{Card(S_{\text{Obs}} \cap S_{\text{Pred}})}{Card(S_{\text{Obs}})} = \frac{\bullet}{\bullet} + \bullet$$

- Observed and predicted metabolites, $S_{\text{Obs}} \cap S_{\text{Pred}}$
- Observed and not predicted metabolites, $S_{\text{Obs}} S_{\text{Pred}}$ or $S_{\text{Obs}} \setminus S_{\text{Pred}}$
- Predicted and not observed metabolites, $S_{\text{Pred}} S_{\text{Obs}}$ or $S_{\text{Pred}} \setminus S_{\text{Obs}}$

Union of pathways

Probability that the metabolite is not predicted given that the metabolite is truly observed (false negatives)

$$\frac{Card(S_{\text{Obs}} \setminus S_{\text{Pred}})}{Card(S_{\text{Obs}})} = \frac{\bullet}{\bullet}$$

Probability that the metabolite is predicted given that the metabolite is truly not observed (false positives)

$$\frac{Card(S_{\text{Pred}} \setminus S_{\text{Obs}})}{Card(S_{\text{Pred}})} = \frac{\bullet}{\bullet} + \bullet$$

- Observed and predicted metabolites, $S_{\text{Obs}} \cap S_{\text{Pred}}$
- Observed and not predicted metabolites, $S_{\rm Obs}$ $S_{\rm Pred}$ or $S_{\rm Obs}$ \ $S_{\rm Pred}$
- Predicted and not observed metabolites, $S_{\text{Pred}} S_{\text{Obs}}$ or $S_{\text{Pred}} \setminus S_{\text{Obs}}$

Reliability of generated metabolic pathway

 $N_{i,succ}^{\mathit{TR}}$ - the numbers of successful applications of the transformation

 $N_{i,\mathit{fail}}^{\mathit{TR}}$ - the numbers of unsuccessful applications of the transformation

Reliability of i-th transformation

$$R_{i}^{TR} = \frac{N_{i,succ}^{TR}}{N_{i,succ}^{TR} + N_{i,fail}^{TR}}$$

Reliability of predicted *l*-th metabolite

$$R_l^M = \prod_{j=1}^J R_j^{TR}$$

Reliability of k-th map

$$R_k^{Map} = \frac{\sum_{j=1}^K R_k^M}{K}$$

Model: Bird or Fish?

Applicability domain

Discrimination of predictions

Training data

External validation data

Modeled hypothesis

Statistics

Application of the model

I. General requirements

Molecular weight, $MW \in 44 \div 960$

II. Structural domain

Atom-centered fragments accounting for:

Attached H atoms

First neighbors (Csp³ or Car) atom

10 bonded non (Csp³ or Car) atom are considered as a single neighbor

IV. Metabolic simulator domain

Unable to simulate catabolism:

Due to lack of suitable transformation

External Validation of CATABOL based on OECD principle

National Institute of Technology and Evaluation (NITE)

Japan, 2005

Used data for external validation

Test: OECD 301 C (MITI I)

Existing chemical: 338

New chemicals: 1123

Total: 1461

Statistics

Without accounting for domain

Accounting for domain

Summary

The committee recommended that.....

- Four biodegradation models (BIOWIN5,6 CERI model CATABOL) are acceptable for using for the screening purpose.
- CATABOL should be used mainly because CATABOL is only model that is based on biodegradation pathway and provide many useful information to assess the biodegradability of a chemicals.
- In addition, CERI model and BIOWIN5 should be used to obtain prediction from different view point.

Summary NITE

The committee recommended that.....

- Four biodegradation models (BIOWIN5,6 CERI model CATABOL) are acceptable for using for the screening purpose.
- CATABOL should be used mainly because CATABOL is only model that is based on biodegradation pathway and provide many useful information to assess the biodegradability of a chemicals.
- In addition, CERI model and BIOWIN5 should be used to obtain prediction from different view point.

Outlook

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

Kinetic Models

Cooperation with BASF, ExxonMobil, Givaudan, Dow Chemicals

BASF: 301A-F, ISO 14593: ~ 500 chemicals

Time series for %DOC, %ThOD or %ThCO₂

Metabolic studies with microorganisms: ~ 300 chemicals (Pseudomonas, Sphingomonas, Rhodococcus, etc.)

Documented metabolic pathways

Training data

Training data

1.00

$$BOD^{Calc} = f(P_i) = f[P_i(k_i, t)]$$

$$\min_{\mathbf{k}} RSS = \sum_{n} \sum_{t} \left(BOD_{n,t}^{Obs} - BOD_{n,t}^{Calc} \right)^{2}$$

P approximated by first order kinetics

$$P_t = (1 - \exp(-kt))$$

P approximated by second order kinetics

$$P_{t} = 1 - \frac{1}{1 + kt[S]_{0}} = 1$$

$$=1-\frac{1}{1+k't}$$

The model is able to predict within OECD 301F test:

- 1. Primary half-life half-life of parent chemical
- 2. Ultimate half-life half-life by BOD
- 3. Biodegradation at different days
- 4. Metabolites quantity at different days
- 5. Biodegradation within 10 days window

The model is able to predict within OECD 301F test:

- 1. Primary half-life half-life of parent chemical
- 2. Ultimate half-life half-life by BOD
- 3. Biodegradation at different days
- 4. Metabolites quantity at different days
- 5. Biodegradation within 10 days window

The model is able to predict within OECD 301F test:

- 1. Primary half-life half-life of parent chemical
- 2. Ultimate half-life half-life by BOD
- 3. Biodegradation at different days
- 4. Metabolites quantity at different days
- 5. Biodegradation within 10 days window

The model is able to predict within OECD 301F test:

- 1. Primary half-life half-life of parent chemical
- 2. Ultimate half-life half-life by BOD
- 3. Biodegradation at different days
- 4. Metabolites quantity at different days
- 5. Biodegradation within 10 days window

Outlook

- QSAR and Complexity of Chemical Structure
- Toxicity as a result of metabolic activation
- Metabolism logic
- Probabilistic approach to modeling metabolism
- •CATABOL for simulating microbial degradation
- •Performance and reliability of predicted metabolites
- Biodegradation kinetic models
- •Simulating the effect of gene modification on metabolism

Simulating the effect of gene modification on metabolism

(Microbial degradation)

ENZYME MODIFICATIONS IN THE MICROBIAL SYSTEM

CHANGES IN DEGRADATION PATHWAY DUE TO ENZYME MODIFICATIONS

DEGRADATION OF CAMPHORE – INTACT ENZYME SYSTEM

DEGRADATION OF CAMPHORE – INTACT ENZYME SYSTEM

DEGRADATION OF CAMPHORE – ELIMINATING HYDROLAZES IN THE ENZYME SYSTEM

INTACT ENZYME SYSTEM

NO HYDROLASES IN THE ENZYME SYSTEM

Conclusions

- The advantage of CATABOL is the combination of a knowledge system with a predictive capabilities
- For environmental risk assessment, its key value is its ability to show possible metabolites resulting from partial biodegradation that might pose issues in the environment
- It's complexity requires interpretation of the results by expert

Questions & Problems

- MITI (301C) vs. other 301 protocols?
- Single protocol vs. most appropriate one ("best scenario")
- Effect of bacterial toxicity on biodegradation
- Peer review of biodegradation transformations
- Data consistency and acquisition

Acknowledgements:

S. Dimitrov, N. Dimitrova, T. Pavlov, A. Kesova, O. Mekenyan, G. Dimitrova, N. Nikolova, et al. Laboratory of Mathematical Chemistry

Joanna Jaworska and Tom Federle Procter & Gamble

Tom Parkerton, Mike Comber, Richard Philips

ExxonMobil

Gary Klecka

Dow Chemicals

Markus Gautchi, Jacque Rudieau Givaudan

EUROPE

